Products List
Contact Us

Tel: +86-0755-28196897
Fax: +86-0755-83646561
E-mail:sales18@toolbattery.net
Skype:coftteck02

Office Add:7/F, Huibaojiang Building, Minzhi Rd., Minzhi Office, Longhua New Area ShenZhen

FactoryAdd:DingKangdaIndustrialPark,
ShatianRD,TangXiaTown,DongGuanCity

Our service hotline
+86-0755-28196897

News

You are here: Home > News Content

Battery Knowledge Base -- Battery Lifetime

Edit:ShenZhen Dingkangda Technoloy Co., Ltd      Date:Mar 18, 2016

Even if never taken out of the original package, disposable (or "primary") batteries can lose two to twenty-five percent of their original charge every year. This is known as the "self discharge" rate and is due to non-current-producing "side" chemical reactions, which occur within the cell even if no load is applied to it. The rate of the side reactions is reduced if the batteries are stored at low temperature, although some batteries can be damaged by freezing. High or low temperatures will reduce battery performance.


Rechargeable batteries traditionally self-discharge more rapidly than disposable alkaline batteries; up to three percent a day (depending on temperature), but modern Lithium designs have reduced the self discharge to a relatively low level (but still poorer than primary technology). Due to their poor shelf life, they should not be stored and then relied upon to power flashlights or radios in an emergency. For this reason, it is a good idea to keep alkaline batteries on hand. Ni-Cd Batteries are almost always "dead" when purchased, and must be charged before first use.


Most NiMH and NiCd batteries can be charged several hundred times. Also, they both can be completely discharged and then recharged without their capacity being damaged or shortened.


Automotive lead-acid rechargeable batteries have a much harder life. Because of vibration, shock, heat, cold, and sulfation of their lead plates, few automotive batteries last beyond six years of regular use. Automotive starting batteries have many thin plates to provide as many amps as possible in a reasonably small package, and are only drained a small amount before being immediately recharged. Care should be taken to avoid deep discharging a starting battery, since each charge and discharge cycle causes active material to be shed from the plates. When holes form in the plates it results in less surface area for the chemical reaction, which results in less available voltage when under load. Leaving a lead-acid battery in a deeply discharged state for any significant length of time allows the lead sulfate to crystallize, making it difficult or impossible to remove during the charging process. This can result in a permanent reduction in the available plate surface and therefore reduced current output and energy capacity. "Deep-Cycle" lead-acid batteries such as those used in electric golf carts have much thicker plates to aid their longevity. The main benefit of lead-acid is its low cost; the main drawbacks are its large size and weight per a given capacity and voltage. Lead-acid batteries should never be discharged to below 20% of their full capacity as internal resistance will cause heat and damage when attempting to recharge them. Deep-cycle lead-acid systems often use a low-charge warning light or a low-charge power cut-off switch to prevent the type of damage that will shorten the battery's life.


Special "reserve" batteries intended for long storage in emergency equipment or munitions keep the electrolyte of the battery separate from the plates until the battery is activated, allowing the cells to be filled with the electrolyte. Shelf times for such batteries can be years or decades. However, their construction is more expensive than more common forms.


Battery life can be extended by storing the batteries at a low temperature, as in a refrigerator or freezer, because the chemical reactions in the batteries are slower. Such storage can extend the life of alkaline batteries by an insignificant 5%; however, the charge of rechargeable batteries can be extended dramatically from a few days to several months. In order to reach their full power, batteries must be returned to room temperature; therefore, alkaline battery manufacturers like Duracell do not recommend refrigerating or freezing batteries.