Products List
Contact Us

Tel: +86-0755-28196897
Fax: +86-0755-83646561
E-mail:sales18@toolbattery.net
Skype:coftteck02

Office Add:7/F, Huibaojiang Building, Minzhi Rd., Minzhi Office, Longhua New Area ShenZhen

FactoryAdd:DingKangdaIndustrialPark,
ShatianRD,TangXiaTown,DongGuanCity

Our service hotline
+86-0755-28196897

News

You are here: Home > News Content

Battery Knowledge Base -- History

Edit:ShenZhen Dingkangda Technoloy Co., Ltd      Date:Mar 15, 2016

Battery (electricity)

In science and technology, a battery is a device that stores chemical energy and makes it available in an electrical form. Batteries consist of electrochemical devices such as two or more galvanic cells, electrolytic cells, fuel cells, or flow cells. The modern development of batteries started with the Voltaic pile, invented by the Italian physicist Alessandro Volta in 1800. According to a 2005 estimate, the worldwide battery industry generates US $48 billion in sales annually.

Formally, an electrical "battery" is an interconnected array of similar voltaic cells ("cells"). However, in many contexts it is common to call a single cell used on its own a battery.

 History

The earliest known artifacts that may have served as batteries are the Baghdad Batteries, which existed some time between 250 BC and 640 AD. However, it is not known what electrical function they may have served, and if they were in fact batteries at all. Scientists have developed several theories about its use, including medicine (as a painkiller) and electroplating jewelry.

The story of the modern battery begins in the 1780s with the discovery of "animal electricity" by Luigi Galvani, which he published in 1791. He created an electric circuit consisting of two different metals, with one touching the frog's leg and the other touching both the leg and the first metal, thus closing the circuit. In modern terms, the frog's leg served as both electrolyte and detector, and the metals served as electrodes. He noticed that even though the frog was dead, its legs would twitch when he touched them with the metals.

By 1791, Alessandro Volta realized that the frog could be replaced by cardboard soaked in salt water, employing another form of detection. Having already studied the electrostatic phenomenon of capacitance, Volta was able to quantitatively measure the electromotive force (emf) associated with each electrode-electrolyte interface (voltage) in volts, which were named after him. Such a device is called a voltaic cell, or cell for short. In 1799, Volta invented the modern battery by placing many galvanic cells in series, literally piling them one above the other. This Voltaic Pile gave a greatly enhanced net emf for the combination, with a voltage of about 50 volts for a 32-cell pile. In many parts of Europe batteries continue to be called piles. Unfortunately, Volta did not appreciate that the voltage was due to chemical reactions. He thought that his cells were an inexhaustible source of energy, and that the associated chemical effects (e.g., corrosion) were a mere nuisance -- rather than, as Michael Faraday showed around 1830, an unavoidable by-product of their operation.

Later, researchers placed galvanic cells in series. Such banks of cells are called batteries, presumably after the earlier use by Benjamin Franklin to describe Leyden jars (capacitors) in series and in parallel.

Although early batteries were of great value for experimental purposes, their limitations made them impractical for large current drain. Later, batteries, starting with the Daniell cell in 1836, provided more reliable currents and were adopted by industry for use in stationary devices, particularly in telegraph networks where they were the only practical source of electricity, since electrical distribution networks did not exist then. These wet cells used liquid electrolytes, which were prone to leaks and spillage if not handled correctly. Many used glass jars to hold their components, which made them fragile. These characteristics made wet cells unsuitable for portable appliances. Near the end of the 19th century, the invention of dry cell batteries, which replaced liquid electrolyte with a paste made portable electrical devices practical.